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Abstract:
In this article, a novel amalgamated model reduction
method is proposed to simplify complex continuous-time
systems using the Marine predators optimization
algorithm (MPOA). The suggested approach guarantees
the stability of the approximant since the stability
equation approach is assimilated with MPOA. To prove
the efficacy of the proposed method two case studies are
considered. Additionally, this study includes a
comparative examination of the dynamic responses and
performance indices to support the superiority of the
proposed method in comparison to existing approaches.
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1. Introduction

The mathematical representation of complicated physical
systems yields a model of significant complexity. Such a
complex model increases the complication in control design
and implementation. High-order control systems are often
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comprise of intricate mathematical models that incorporate a
multitude of state variables and parameters. The computing
demands and time requirements of simulating or solving
these models with high dimensions might be substantial. In
addition, Real-time control is of utmost importance in various
engineering domains, including aerospace, robotics, and
autonomous vehicles. The implementation of high-order
control systems in real-time scenarios may be deemed
unsuitable due to the significant computational burden they
entail. Hence, there is often a need for a reduced model that
maintains a decent level of accuracy. Model order reduction
(MOR) is a technique employed to simplify intricate models
and decrease the computing burden associated with
simulation. Since its inception, the utilization of MOR has
been observed in a multitude of engineering applications
(Jazlan et al., 2014; Sonker et al., 2017; Sonker et al., 2019).
The objective of MOR is to decrease the intricacy of a model
while preserving its fundamental dynamic characteristics. The
decrease in complexity results in notable enhancements in
computational efficiency, hence enabling the execution of
real-time simulations, control design, and analysis. The act of
decreasing the model order facilitates expedited execution of
the control loop, hence enhancing the system's ability to
promptly adapt to variations in conditions and disturbances.
In addition, the process of designing and optimizing
controllers for systems with a high order can present
significant challenges and consume a considerable amount of
time. Engineers can benefit from the reduction of model
order since it allows them to work with reduced
representations that are more amenable to analysis and
manipulation. The process of simplification enhances the ease
of designing and fine-tuning controllers, resulting in control
strategies that are more efficient and effective. Reduced-
order models offer a more concise depiction of the system,
facilitating the integration and handling of uncertainty. This
holds significant importance in the context of robust control
and adaptive control applications.

The primary goals of MOR encompass three key aspects: (i)
simplifying the assessment of system behavior, (ii) mitigating
computing challenges, and (iii) devising a more simplified
controller design. Over the past five decades, numerous MOR
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strategies have been proposed for various classes of systems.
One of the traditional methods for model order reduction
(MOR) is the Padé approximation, first introduced by
Shamash in 1974 (Shamash, 1974). Other commonly used
techniques are the continuing fraction expansion (Shamash,
1976), time-moment matching (TMM) (Zakian, 1973), and so
on. The methods (Shamash, 1974; Shamash, 1976; Zakian,
1973) have been seen to rely on algebraic computations and
do not incorporate a stability condition. Therefore, it is
possible that these methods may yield unstable approximants
in certain instances, notwithstanding the stability of the
actual system. Therefore, stability preserving methods (SPMs)
(Chenetal., 1979; Choudhary and Nagar, 2019) are developed
to overcome the instability issue considering different
stability criteria. Moreover, a variety of mixed methods that
combine traditional approaches with SPMs are presented in
the existing literature so as to enhance the accuracy of
approximation errors. The utilization of mixed approaches
(Biradar et al.,, 2016; Vasu et al., 2016; Singh et al., 2019;
Potturu et al., 2021) involves the application of a SPM for the
computation of the denominator in a reduced-order
approximant (ROA). In contrast, a conventional MOR
approach is employed to estimate the numerator polynomial
of the ROA. Subsequently, numerous researchers effectively
applied various optimization strategies in conjunction with
multi-objective optimization algorithms, taking into account a
designated performance index as the fitness function. Several
strategies have been proposed in the literature for addressing
this problem. These includes the Salp Swarm Optimization
(SSO) based strategy as presented by Ahamad and Sikander
(2021), the Cuckoo search-based method as investigated by
Gupta et al. (2018; 2019b) and Singh et al. (2018), and the Big
Bang-Big Crunch (BB-BC) based approaches (Gupta et al.,,
2019a; Gupta et al., 2021; Jain & Hote, 2021; Singh et al.,
2019), differential evolution based technique (Singh et al.,
2021) and so on. Few researchers (Sikander and Prasad, 2015;
Butti et al., 2021) employed only optimization algorithms for
finding a ROA. It is also found that some of the avaiable
methods such as (Biradar et al., 2016; Ahamad & Sikander,
2021; Jain & Hote, 2021; Potturu et al., 2021) do not always
guarantee the stability of the obtained reduced order model.
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Furthermore, the no free lunch theorem argues that it is not
possible for one specific optimization technique to effectively
solve all problems. Hence, the present study suggests a novel
approach for MOR of higher-order continuous-time systems
(HOCTS) that employs MPOA suggested by Faramarzi et al.
(2020). The MPOA is inspired by the hunting and foraging
behaviors of marine predators and has found applications in
a variety of technical and scientific areas. These applications
include, for example, in control systems and robotics for
controller tuning and design for robotic systems Yakout et al.
(2021), for trajectory planning of autonomous vehicles and
drones (Cuevas et al., 2020), and for the path planning of
robots (Yang et al.,, 2022), such as swarming robots. In
addition, the algorithm also finds its applications in electrical
engineering for circuit design and optimization, power system
analysis and optimization (Sobhy et al., 2021), antenna design
and placement in wireless communication systems (Owoola
et al., 2023), to name a few. These applications demonstrate
the versatility of the Marine Predator Optimization algorithm
in tackling optimization and search problems across a wide
range of scientific and technical disciplines, making it a
valuable tool for researchers and engineers seeking efficient
solutions to complex problems in various domains. This serves
the main motivation for the selection of MPOA for the present
study. The novelties and the main contributions of the
proposed work are as presented below:

(i) The proposed method guarantees the stability of the ROA
if the original HOCTS is stable since the stability equations
(Chen et al., 1979) are employed along with the MPOA
(Faramarzi et al., 2020).

(ii) The stability failure of the ROAs by Biradar et al. (2016),
Ahamad & Sikander's method (2021), Jain & Hote (2021),
and Potturu et al. (2021) is exhibited by considering two
numerical examples. Apart from this, the problems
associated with Sikander & Prasad's method (2015) and
Butti et al.'s method (2021) are also highlighted.

(iii) The effectiveness of the proposed strategy is
demonstrated by incorporating a comparative analysis of
the time and frequency domain findings from the two
case studies.
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2. Statement of the problem

Let an n'" order linear-time invariant (LTl) stable HOCTS as

m

N(s) _ 2.0 ()
D(s) > ,d;(s)’
(1)

where m < n and the numerator and denominator coefficients

Go (S) =

of the higher order system (HOS) are represented as b, d;
respectively. The objective of this article is to determine a
stable reduced-order continuous-time approximant (ROCTA)
from Go(s) as

UN(s) L0
Di(s) > fi(s)
(2)

where g <rand g, fjare the coefficients of the numerator and

G,(s)

denominator of the reduced-order model (ROM) which are
subject to the minimization of the performance index, which
measures the discrepancy between the responses of systems
Go(s) and G((s), which can be expressed as

t
J= WlJ‘(C_Cr)2 +W2(ess _essr)+W3 ”GO _Gr”OO
0

(3)
here, the step responses of the original HOCTS is shown by ¢
whereas the step response of the proposed ROCTA is
represented by c.. The final time is denoted by t;, and the
steady-state errors of the HOCTS and proposed ROCTA are
denoted by ess and e, respectively. Weighting factors are
represented by w1, w,, and ws and the H.. norm error is given

by |G, -G, |, -

3. Failure of the Existing techniques

In this article, two numerical examples are considered to
demonstrate the instability issue of reduced model by Biradar
et al.'s method (2016), Ahamad & Sikander's method (2021),
Jain & Hote (2021) and Potturu et al.'s method (2021). It is
unveiled that the stability claim made by these methods
(Biradar et al., 2016; Ahamad & Sikander, 2021; Potturu et al.,
2021) is not always valid.
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Example 1:
0.0067s° +0.65* +1.55% +2.0165% +1.555 + 0.6
0.067s® +0.7s° +3s* +6.67s° +7.93s> + 4.635 +1

Gl (S) =

Following Biradar et al.'s method (2016), the time moments
are obtained as -6.393; -1.228; 0.6 and 2.9436. Therefore, the
second-order ROA by Biradar et al.'s method (2016) is
obtained as

(s) = 17.2962 —24.1921s
1+0.856s —3.1541s”
(4)

As per the Routh stability criterion, all entries of the first

10 Biradar et al., 20161

column of the Routh array must be non-zero and of the same
sign for stability. A sign change in the first column of the Routh
table of the denominator polynomial of Gir(S) [siradar et al, 2016]
can be clearly observed which leads to instability. Similarly,
the second-order ROA by Potturu et al.'s method (2021) for
G(s) is given by

—0.19023+0.2265s

(s)= 7
~0.31704-0.27139s +
(5)

1r[P0tturi etal., 2021]

There is a sign change in the first column of the Routh array
of the denominator polynomial of Gir potturi et al,, 20215 Further,
the 2™ order model by Jain & Hote's method (2021) for
Example 1 is obtained as

_ -0.0951+0.1331s
—0.31704-0.27139s + 5°
(6)

(s)

lr[.]ain and Hote, 2021]

It is evident that Girpain & Hote, 2021] (S) is also unstable due to a
right half pole. Similarly, the 2" order ROA by Ahamad &
Sikander method (2021) for Gs(s) is given by
(s) = 23.3268 —32.6264s
1+ 0.8560s —3.1541s?

erhamad & Sikander, 2021

(7)

For the reduced model for Gi [ahamad & sikander, 2021] (S) in (7) there
exists a pole at 0.7149 which is in the right half of the s-plane.
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Hence, Gir jahamad & sikander, 2021 (S) is also unstable. Now, another
example is considered for which these methods (Biradar et al.,
2016; Ahamad & Sikander, 2021; Jain & Hote, 2021; Potturu
et al., 2021) yield unstable approximants.

Example 2:
0.1s® +9.205s° + 44.78s* +86.06s> +98.365% +
66.79s+22.39

G,(s)= 7 6 5 4 3 2

s" +11.955° +60.455> +166.7s" +267.7S° + 246.65° +
118.6s+22.39

The time moments for Example 2 are derived as follows: -
223.3127;-54.0866; -12.4825; -2.3140; 1.00; 5.6364; 26.2634;
110.2344; and 450.7146. The instability of both the 2" and 5"
order approximants of Example 2 has been examined. Both
are found to be unstable. The 2" and 5" order ROAs obtained
by Biradar et al.’s method (2016) are given by
G _ 3.9871s—-0.9060

Ao s 200 10.23275% +1.9864s 1

(8)

G _ 0.6677s* +18.76s° —9.3525% + 21.235 —7.295

Sfarr «a 2101 4 9565° 413,385 + 26.55° + 20.9s +3.179s —1

(9)

The instability of the 2"%-order approximant (8) can be
attributed to the presence of a pole at 0.2303 in the right half
of s-plane. We can determine stability of the ROA (9) by using
Routh table which is given as below

4.95 26. 3.1
6 5 79
13.3 20. -1

8 9

18.7 3.5

586 494

18.3 -1

683

4.57

07

-1
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The presence of a sign change in the first column of the Routh
array indicates that the fifth order approximant of Example 2,
as determined by Biradar et al.'s technique (2016) is
characterized by instability. The 2™ and 5%"-order models
obtained by Potturu et al.’s method (2021) for G5(s) are given
by

G _ 0.4203s—-0.09773

Aoz g2 40,1941 —0.09773
(10)

_0.7942s" +1.721s° +1.596s” +1.108s —0.2018

G =
Prounas ;g8 12 75" +5.3465° +4.2175 +0.64145 —0.2018
(11)

The 2" and 5™-order ROAs as per the approach proposed by
Jain & Hote’s method (2021) are obtained as follows
0.2648s —0.0489

G =
Poan o200 62 1 () 19415 —0.09773
(12)

_0.9961s* +1.439s° +2.007s* + 0.8072s — 0.1009

G -
Sfanwaroe 22— g5 4 9 764 4 5.3465° + 4.217s% +0.64145 —0.2018
(13)

and the approximants obtained by the method given by
Ahamad & Sikander's method (2021) are as follows

4.26s-0.9757

G =
21t Ahamad and Sikander, 2021] 102332 +1.9865—1
(14)

_ 7.724s* +0.3822s° + 22.09s° — 6.925s + 3.841

G =
SMann asiansn 2020 4 95655 113,385 + 26.55° + 20.95% +3.179s —1
(15)

The generated ROAs in equations (10)-(15) exhibit instability
due to the presence of sign changes in the first column of the
Routh array. This observation verifies the instability of these
approximations. Hence, it is clear that all four methods
(Biradar et al., 2016; Ahamad & Sikander, 2021; Jain & Hote.,
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2021; Potturu et al., 2021) may not guarantee stable ROAs for
all HOCTS.

4. Proposed Method

This section focuses on the two steps involved in the
suggested approach for achieving ROA. The stability
equations (Chen et al., 1979) are utilized in the initial stage to
ascertain the denominator polynomial of the suggested
ROCTA. The second part of the process entails the calculation
of the numerator polynomial through the utilization of MPOA,
as described by Faramarzai et al. (2020). This computation is
carried out with the objective of minimizing the performance
indices outlined in equation (3). The procedure for acquiring
the planned ROCTA is outlined as follows:

4.1 Computation of ROA for the denominator

The computation of the denominator polynomial for the
proposed ROCTA is performed initially. Therefore, the n-th
order denominator polynomial (1) may be divided into two
distinct sets: one consisting of even powers of s and the other

consisting of odd powers of s, as demonstrated below:
2
S

E(s)=d, [ [1+] —
=L z

5

(16)
2

O(s) =bys [1+] =
=1

S

(17)

where n. and ng are the integer parts of n/2 and (n-1)/2,

respectively. It can be observed that z and p? increases
J )

monotonically. Therefore, it is possible to remove the terms
with bigger magnitudes in order to obtain the denominator of
the r'" order ROA. The development of the new equations is

undertaken as
2

Esmose (S) = dof[1+ i
EE

S

(18)
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2

Oy (5) = bys [1+| —
=1

S

(19)

where re and r, are the integer parts of r/2 and (r-1)/2,
respectively. Thus, the denominator of the proposed ROCTA
is obtained as

Dsmose(S) = Esmose(s) + Osmose(S)

4.2. Computation of ROA for the numerator

In this section, the computation of the reduced-order
numerator approximant of the proposed technique is
performed using the MPOA as presented by Faramarzi et al.
in 2020. The MPOA employs a modeling approach that
incorporates Lévy and Brownian motion patterns to simulate
the movement of ocean predators. This is done in conjunction
with an optimal encounter rate strategy within a marine
ecosystem. During low concentration of targets, it uses Lévy
movement, whereas Brownian motion is followed during
ample target case. Similar to other optimization algorithms,
the initial solution of MPOA is distributed uniformly in the
search space as

max Xmin) (21)

where Xmax and Xmin are the upper and lower bounds of the
unknown variables and rand €[0,1] is a uniform random
vector. As MPOA is based on the survival of the fittest, the
best solution is entitled as the best predator. It forms an élite
matrix which is given by

Eil,l ,I,z ,I,d
Ezl, 1 Ezl, 2 T Ezl, d
_Enl,l Enlz Er:,d_nxd

—
z

where E' represents the best predator vector which

constructs the Elite matrix by replicating n times, n is the
number of search agents, and d is the number of dimensions.
Based on the target’s positions information, the arrays of this
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matrix manage searching and finding the target. Both
predator and target are considered search agents. The Elite
matrix updates after each iteration if an improved predator
replaces the best predator. The predators update their
positions using the target matrix T. The initialization forms the
initial target matrix, of which the best predator constructs the
Elite matrix. The target matrix is given by

_11,1 11,2 e Tld
Tz, 1 T2, 2 T Tz, d
T=| : : : :
_Tn, 1 Tn, 2 Tn d_nxd
(23)

where P;;presents the j* dimension of the it" target.

Considering different velocity ratios and imitating the life of a
predator and target, the MPOA is separated into three main
stages. A specific iteration period is specified and allocated for
each stage which is as follows:

Stage 1 (The high-velocity ratio occurs when the predator
exhibits a greater speed than its target): This phenomenon
arises at the earliest stages of the optimization iterations. The
mathematical representation of this stage is given as

while Iter < 1 Iter_..
3

stepsize, :RB(@[EIitei—RB ®Tij, i=1 2,---n

(24)

T, =T,+ P.R®stepsize,

5
where RB is the normal distribution-based random numbers

vector that represents the Brownian motion and is denoted
as P. The constant value of P is 0.5. R is a vector consisting of
uniform random values within the range of [0, 1]. Iter refers
to the current iteration, and itermax is the maximum iteration.

N
The multiplication of R; by target simulates the motion of the

target.
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Stage 2 (The unit velocity ratio refers to a scenario when both
the predator and the target move at a same pace): This phase
takes place during the intermediate optimization stage,
wherein both the predator and the target actively search for
their respective prey. Therefore, the objective of exploration
is to transition towards exploitation. Consequently, one
portion of the population is allocated for the purpose of
exploration, while the remaining portion is designated for
exploitation. During this phase, the prey organism engages in
exploitation, while the predator organism engages in
exploration. When a target exhibits Lévy motion with a unit
velocity ratio (v = 1), the optimal strategy for a predator is to
employ Brownian motion. The mathematical model
pertaining to this particular step is

1 2
while 3 Iter, ., < Iter < 3 Iter, .,

For the first half of the population:

stepsize, = F{@(Elitei—liég'l'i} i=1 2,---n/2

T. =T.+ P.R®stepsize,
(25)

where R is a Lévy distribution based random number

vector.
For the second half of the population:

stepsize, = RB®(RTB ®Elite, — i]; i=n/2,n

—

T, = Elite,+ P.CF ® stepsize,
(26)
where CF=|1- Iter 2 Iter is an adaptive
Iter . Iter...

parameter which controls the predator movement.

Stage 3 (Low-velocity ratio: When predator moves faster than
target):

This situation occurs in the last stage and associates with high
exploitation. In a low-velocity ratio (v = 0.1), Lévy is the best
strategy for a predator which is represented as
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. 2
while Iter > 3 Iter .

stepsize, = Ri@[li ®Elitei—'FiJ, i=1....n

—

T. = Elite + P.CF ® stepsize,
(27)

5
Here, the multiplication of R and Elite simulates predator

movement in the Lévy scheme while adding the stepsize to
Elite position simulates the predator movement to update
target’s position.

It is to be noted that the eddy formation or fish aggregating
devices (FADs) cause behavioural change in Marine predators.
The FADs may be considered as local optima, and a long-jump
of predators avoids trapping into local optima. The effect of
FADs is presented as

-I?i-i-CF{ijn-i-ﬁ@(;max—;minj}@U if r<FADs
T =

Ti+[FADs(1—r)+r](ﬁl—fz) if > FADs

(28)
where FADs = 0.2 is the probability of FADs effect on the
optimization process, r is the uniform random number within

[0,1], The construction of J €[0,1] involves the generation
of a random vector, followed by the modification of its
elements. Specifically, if an element in the vector is less than
0.2, it is set to zero, and if it is more than 0.2, it is set to one.
The Pseudocode of the MPOA is given below

Initialize Target populations i=1,2,---,n
while termination criterion is not achieved
Calculate the fitness, construct the Elite matrix, and achieve
memory saving
if Iter < Itermax / 3
Update target using (24)
elseif [termax / 3 < lter < 2" Itermax / 3
For the first half of the populations (i=1,2,---,n/2)
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Update target using (25)
For the second half of the populations (i=n/2,---,n)

Update target using (26)
elseif Iter > 2" Itermax / 3
Update target using (27)
end if
Achieve memory saving and update Elite
Apply FADs effect and update using (28)
end while

5. Numerical Examples

The second-order reduced model for Example 1 is obtained
using the proposed method which is given below:

(S) _ 0.076796 + 0.228345s
fonee 0.1328+0.6146s + s

The poles of the function Gismose(s) are located at -
0.307310.19587j, which are situated in the left half of the
complex s-plane. Therefore, it may be concluded that the
aforementioned second-order reduced model exhibits

stability. Table 1 displays the values of the integral square
error (ISE), integral absolute error (IAE), integral of time
multiplied absolute error (ITAE), and the He. norm error for
Example 1. Additionally, the table includes the outcomes
obtained using the existing methodologies (Biradar et al.,
2016; Prajapati & Prasad, 2019b; Ahamad & Sikander, 2021;
Jain & Hote, 2021; and Potturu et al.’s method, 2021).

According to the data presented in Table 1, it is evident that
the suggested method yields the lowest values for ISE, IAE,
and ITAE in comparison to other methods (Biradar et al., 2016;
Prajapati and Prasad, 2019b; Ahamad & Sikander, 2021; Jain
and Hote, 2021; Potturi et al., 2021). The proposed method
yields a superior H.. norm error compared to the methods
proposed by Biradar et al. (2016), Ahamad & Sikander (2021),
and Jain & Hote (2021). Nevertheless, the method proposed
by Prajapati and Prasad (2019b) as well as the method
presented by Potturu et al. (2021) exhibit a somewhat lower
H.. norm error compared to the strategy suggested in this
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study. The instability of the second-order ROAs proposed by
Biradar et al. (2016), Ahamad and Sikander (2021), Jain and
Hote (2021), and Potturu et al. (2021) has been demonstrated
in Section 3. Therefore, it is noteworthy that the error indices
of the approximants derived from the methodologies
employed by Biradar et al. (2016), Ahamad and Sikander
(2021), Jain and Hote (2021), and Potturu et al. (2021) are
significanty high.

The optimal values within the table are shown by the
utilization of bold typeface. Additionally, Figures 1a, 1b, and
1c depict the step responses, error in step responses, and
frequency responses, respectively, of the second-order
approximations of Example 1 using both the proposed
technique and Prajapati & Prasad's method (2019b). The
Figures representing the plots for Biradar et al. (2016),
Ahamad & Sikander (2021), Jain & Hote (2021), and Potturu
et al. (2021) have not been generated due to the observed
instability of the obtained results using these approaches.
Based on the analysis of frequency responses, it is evident
that the method proposed by Biradar et al. (2016) and the
method proposed by Ahamad and Sikander (2021) do not
yield a closely matched approximation. However, alternative
approaches (Prajapati & Prasad, 2019b; Jain & Hote, 2021;
Potturu et al., 2021), including the suggested method in this
study, yield a satisfactory approximation.

Table 1: Comparison of various error indices of ROAs for

Example 1
Method ||G -G, ||Oo ITAE IAE ISE
Proposed 0.3325559 | 1.412557 0.3649175 0.0307478
Ahamad & 22.72679 1.8732e+03 | 2.458138e+02 | 4.57792e+03
Sikander's (2021)
Biradar et al.’s 16.69619 1.3689e+03 | 1.806033e+02 | 2.4711e+03
(2016)
Jain & Hote's 0.3491158 | 51.33992 5.132514 4.161235675
(2021)
Potturu et al.’s 0.323802 2.9526e+04 | 2.17084e+03 1.68447e+06
(2021)
Prajapati & 0.292987 2.503519 0.7299123 0.103989638
Prasad's (2019)
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Step response plots of ROAs
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The 2™ and 5™-order approximants of Example 2 are

analyzed, obtained by the proposed and existing methods
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(Biradar et al., 2016; Prajapati & Prasad, 2019b; Ahamad &
Sikander, 2021; Jain & Hote, 2021; Potturi et al., 2021). It is
already shown in Section 3, that the 2"¢ and 5"-order ROAs
obtained by Biradar et al. (2016), Ahamad & Sikander (2021),
Jain & Hote (2021), Potturi et al. (2021) methods are unstable.
The 2™ and 5% order approximations of Example 2, as
calculated using the suggested method, are as follows:
0.33457s +0.092096 (29)
2o (8) =7 0 51435 + 0.0071

G 0.97035s% +1.359253 +1.8781752 +1.185s + 0.403407
smose s° +2.63595% + 4.769553 + 4.3961s2 + 2.135 + 0.4021

(30)

The poles of the system Gasmose(S) are determined to be -
0.25725 + 0.175847j. Therefore, it can be concluded that the
second-order model for Example 2, as determined by the
presented method, exhibits stability. In order to assess the
stability of the suggested approximant (30), the Routh table is
employed, as depicted in the following manner:

1 4.76 2.
9 13

2.636 4.39 0.
6 40

21

3.101 1.97

322 745
8

2.715 0.40

2392 21

1.518

18

0.402

1

It is evident that there is an absence of sign change in the
initial column of the Routh array. Therefore, it can be
concluded that the suggested 5™-order ROA exhibits stability.
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Hence, it can be concluded that the stability of the suggested
method's ROAs in Examples 1 and 2 is established.

Table 2 presents the ISE, IAE, ITAE, and H.. norm error values
obtained from the proposed technique and existing methods
(Biradar et al., 2016; Prajapati & Prasad, 2019b; Ahamad &
Sikander, 2021; Jain & Hote, 2021; Potturi et al., 2021) for
Example 2. The method developed by Ahamad and Sikander
(2021) demonstrates slightly superior results compared to the
suggested method. However, when compared to the
approaches presented by Biradar et al. (2016), Prajapati and
Prasad (2019b), Jain and Hote (2021), and Potturi et al. (2021),
the proposed method consistently achieves the lowest error
indices.

Table 3 displays the error indices corresponding to the 5%
order approximant of Example 2. The data shown in Table 3
indicates that Biradar et al. (2016) and Ahamad & Sikander
(2021) exhibit higher error indices, which can be attributed to
the presence of an unstable approximant, as discussed in
Section 3. Remarkably, the method proposed by Potturu et al.
(2021) yields reduced values of Integral Square Error (ISE),
Integral Absolute Error (IAE), and Integral Time-weighted
Absolute Error (ITAE) for the 5™-order approximant, even
after having the presence of an unstable approximant.
Nevertheless, the aforementioned methodologies (Biradar et
al., 2016; Ahamad & Sikander, 2021; Jain & Hote, 2021;
Potturi et al., 2021) do not provide a guarantee of the stability
of the ROAs. In contrast, the proposed MOR method
guarantees the stability of ROA and yields comparable error
indices. Therefore, it can be inferred that, the proposed
approach exhibits superior performance in comparison to the
established methodologies (Biradar et al., 2016; Prajapati and
Prasad, 2019b; Ahamad & Sikander, 2021; Jain & Hote, 2021;
Potturi et al., 2021).

Table 2: Comparison of various error indices of 2"-order
ROAs for Example 2

Ic-G/|| ITAE IAE ISE
Proposed 0.374959 2.0369210 | 0.4633578 | 0.0443109
Ahamad & 03461587865 | 0.78569923 | 0.31641214 | 0.02921412

Sikander's (2021)
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Biradar et al.'s 0.340750436 | 5.266572709 | 0.894394053 | 0.0675785051
(2016)

Jain & Hote's 0.4996192342 | 24.59303554 | 3.562492821 | 0.9943055718
(2021)

Potturu et al.'s 0.3463455085 | 9.71710739 | 1.053335375 | 0.11624444
(2021)

Prajapati & 0.432037141 | 5.23155926 | 1.209650576 | 0.22484991
Prasad's (2019)

Table 3: Comparison of various error indices of 5™-order ROAs

for Example 2

Method IG-G,[. ITAE IAE ISE
Proposed 0.1195229 | 0.6216512 | 0.14269254 | 0.00267585
Ahamad & Sikander's | 8.178719999 | 2.83356e+02 | 36.9070795 | 1.3019e+02
(2021)

Biradar et al.'s (2016) | 2.10059048 | 23.02517812 | 3.73066328 | 1.387690629
Jain & Hote's (2021) | 0.499898171 | 52.5462873 | 0.27456137 | 3.06318055
Potturu et al.'s (2021) | 0.1256661 | 0.18250369 | 0.0834931 | 0.0018081
Prajapati & Prasad's | 0.17486613 | 0.1668596 | 0.10414799 | 0.00447967
(2019)

The analysis of Figure 2a reveals that the proposed method
provides a more accurate approximation compared to the
approach presented by Prajapati & Prasad (2019b). However,
there is room for improvement in the error of the step
response in certain sections of the plot, as depicted in Figure
2b. In this case, all methods (Biradar et al., 2016; Prajapati &
Prasad, 2019b; Ahamad & Sikander, 2021; Jain & Hote, 2021;
Potturi et al., 2021) offers satisfactory frequency response
characteristics. See Figure 2c. Figure 3 displays the plots of the
fifth-order approximants, which bear resemblance to the
plots observed in previous cases. The step responses depicted
in Figure 3a provide clear evidence that, the suggested
method closely approximates the response of the original
system. However, it is worth noting that there is room for
improvement in the step response error, as depicted in Figure
3b. This aspect should be explored further in future research
endeavors. In the present scenario, it is seen that the
frequency response estimate provided by Biradar et al. (2016)
and Ahamad & Sikander's technique (2021) is inadequate for
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6. Conclusions

This article presents a novel approach for determining
reduced-order approximations of higher-order continuous-
time systems. The article also highlights the shortcomings and
stability issues associated with existing methods (Biradar et
al.,, 2016; Ahamad & Sikander, 2021; Jain & Hote, 2021;
Potturi et al.,, 2021), as demonstrated through numerical
examples. The proposed technique ensures the stability of all
approximations if the original system is stable. Simulation
results indicate that the proposed method generally provides
a more accurate approximation compared to existing
methods. However, it is worth noting that the simulation run-

3901



Journal of Namibian Studies, 35 S1 (2023): 3881-3904 ISSN: 2197-5523 (online)

time of the proposed method may be longer due to the fitness
function, and there is room for improvement in terms of
approximation error. Nonetheless, these limitations can be
overlooked considering the stability guarantee offered by the
proposed method, and these can be addressed in future
research. Furthermore, the proposed method can be easily
extended to discrete-time systems.
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