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Abstract: 

In this article, a novel amalgamated model reduction 

method is proposed to simplify complex continuous-time 

systems using the Marine predators optimization 

algorithm (MPOA). The suggested approach guarantees 

the stability of the approximant since the stability 

equation approach is assimilated with MPOA. To prove 

the efficacy of the proposed method two case studies are 

considered. Additionally, this study includes a 

comparative examination of the dynamic responses and 

performance indices to support the superiority of the 

proposed method in comparison to existing approaches. 

  

Keywords: Continuous-time systems, Model order 

reduction, Marine Predators Optimization Algorithm, 

Performance indices. 

 

1. Introduction 

The mathematical representation of complicated physical 

systems yields a model of significant complexity. Such a 

complex model increases the complication in control design 

and implementation. High-order control systems are often 
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comprise of intricate mathematical models that incorporate a 

multitude of state variables and parameters. The computing 

demands and time requirements of simulating or solving 

these models with high dimensions might be substantial. In 

addition, Real-time control is of utmost importance in various 

engineering domains, including aerospace, robotics, and 

autonomous vehicles. The implementation of high-order 

control systems in real-time scenarios may be deemed 

unsuitable due to the significant computational burden they 

entail. Hence, there is often a need for a reduced model that 

maintains a decent level of accuracy. Model order reduction 

(MOR) is a technique employed to simplify intricate models 

and decrease the computing burden associated with 

simulation. Since its inception, the utilization of MOR has 

been observed in a multitude of engineering applications 

(Jazlan et al., 2014; Sonker et al., 2017; Sonker et al., 2019). 

The objective of MOR is to decrease the intricacy of a model 

while preserving its fundamental dynamic characteristics. The 

decrease in complexity results in notable enhancements in 

computational efficiency, hence enabling the execution of 

real-time simulations, control design, and analysis. The act of 

decreasing the model order facilitates expedited execution of 

the control loop, hence enhancing the system's ability to 

promptly adapt to variations in conditions and disturbances. 

In addition, the process of designing and optimizing 

controllers for systems with a high order can present 

significant challenges and consume a considerable amount of 

time. Engineers can benefit from the reduction of model 

order since it allows them to work with reduced 

representations that are more amenable to analysis and 

manipulation. The process of simplification enhances the ease 

of designing and fine-tuning controllers, resulting in control 

strategies that are more efficient and effective. Reduced-

order models offer a more concise depiction of the system, 

facilitating the integration and handling of uncertainty. This 

holds significant importance in the context of robust control 

and adaptive control applications. 

The primary goals of MOR encompass three key aspects: (i) 

simplifying the assessment of system behavior, (ii) mitigating 

computing challenges, and (iii) devising a more simplified 

controller design. Over the past five decades, numerous MOR 
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strategies have been proposed for various classes of systems. 

One of the traditional methods for model order reduction 

(MOR) is the Padé approximation, first introduced by 

Shamash in 1974 (Shamash, 1974). Other commonly used 

techniques are the continuing fraction expansion (Shamash, 

1976), time-moment matching (TMM) (Zakian, 1973), and so 

on. The methods (Shamash, 1974; Shamash, 1976; Zakian, 

1973) have been seen to rely on algebraic computations and 

do not incorporate a stability condition. Therefore, it is 

possible that these methods may yield unstable approximants 

in certain instances, notwithstanding the stability of the 

actual system. Therefore, stability preserving methods (SPMs) 

(Chen et al., 1979; Choudhary and Nagar, 2019) are developed 

to overcome the instability issue considering different 

stability criteria. Moreover, a variety of mixed methods that 

combine traditional approaches with SPMs are presented in 

the existing literature so as to enhance the accuracy of 

approximation errors. The utilization of mixed approaches 

(Biradar et al., 2016; Vasu et al., 2016; Singh et al., 2019; 

Potturu et al., 2021) involves the application of a SPM for the 

computation of the denominator in a reduced-order 

approximant (ROA). In contrast, a conventional MOR 

approach is employed to estimate the numerator polynomial 

of the ROA. Subsequently, numerous researchers effectively 

applied various optimization strategies in conjunction with 

multi-objective optimization algorithms, taking into account a 

designated performance index as the fitness function. Several 

strategies have been proposed in the literature for addressing 

this problem. These includes the Salp Swarm Optimization 

(SSO) based strategy as presented by Ahamad and Sikander 

(2021), the Cuckoo search-based method as investigated by 

Gupta et al. (2018; 2019b) and Singh et al. (2018), and the Big 

Bang-Big Crunch (BB-BC) based approaches (Gupta et al., 

2019a; Gupta et al., 2021; Jain & Hote, 2021; Singh et al., 

2019), differential evolution based technique (Singh et al., 

2021) and so on. Few researchers (Sikander and Prasad, 2015; 

Butti et al., 2021) employed only optimization algorithms for 

finding a ROA. It is also found that some of the avaiable 

methods such as (Biradar et al., 2016; Ahamad & Sikander, 

2021; Jain & Hote, 2021; Potturu et al., 2021) do not always 

guarantee the stability of the obtained reduced order model. 
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Furthermore, the no free lunch theorem argues that it is not 

possible for one specific optimization technique to effectively 

solve all problems. Hence, the present study suggests a novel 

approach for MOR of higher-order continuous-time systems 

(HOCTS) that employs MPOA suggested by Faramarzi et al. 

(2020). The MPOA is inspired by the hunting and foraging 

behaviors of marine predators and has found applications in 

a variety of technical and scientific areas. These applications 

include, for example, in control systems and robotics for 

controller tuning and design for robotic systems Yakout et al. 

(2021), for trajectory planning of autonomous vehicles and 

drones (Cuevas et al., 2020), and for the path planning of 

robots (Yang et al., 2022), such as swarming robots. In 

addition, the algorithm also finds its applications in electrical 

engineering for circuit design and optimization, power system 

analysis and optimization (Sobhy et al., 2021), antenna design 

and placement in wireless communication systems (Owoola 

et al., 2023), to name a few. These applications demonstrate 

the versatility of the Marine Predator Optimization algorithm 

in tackling optimization and search problems across a wide 

range of scientific and technical disciplines, making it a 

valuable tool for researchers and engineers seeking efficient 

solutions to complex problems in various domains. This serves 

the main motivation for the selection of MPOA for the present 

study. The novelties and the main contributions of the 

proposed work are as presented below: 

(i) The proposed method guarantees the stability of the ROA 

if the original HOCTS is stable since the stability equations 

(Chen et al., 1979) are employed along with the MPOA 

(Faramarzi et al., 2020). 

(ii) The stability failure of the ROAs by Biradar et al. (2016), 

Ahamad & Sikander's method (2021), Jain & Hote (2021), 

and Potturu et al. (2021) is exhibited by considering two 

numerical examples. Apart from this, the problems 

associated with Sikander & Prasad's method (2015) and 

Butti et al.'s method (2021) are also highlighted. 

(iii) The effectiveness of the proposed strategy is 

demonstrated by incorporating a comparative analysis of 

the time and frequency domain findings from the two 

case studies. 
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2. Statement of the problem 

Let an nth order linear-time invariant (LTI) stable HOCTS as 

 

0
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0
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D s d s
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= =
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          (1) 

where m < n and the numerator and denominator coefficients 

of the higher order system (HOS) are represented as bi, dj 

respectively. The objective of this article is to determine a 

stable reduced-order continuous-time approximant (ROCTA) 

from Go(s) as 

0
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where q < r and ei, fj are the coefficients of the numerator and 

denominator of the reduced-order model (ROM) which are 

subject to the minimization of the performance index, which 

measures the discrepancy between the responses of systems 

Go(s) and Gr(s), which can be expressed as 

2

1 2 3 0

0

( ) ( )

ft

r ss ssr rJ w c c w e e w G G


= − + − + −  

  (3) 

here, the step responses of the original HOCTS is shown by c 

whereas the step response of the proposed ROCTA is 

represented by cr. The final time is denoted by tf, and the 

steady-state errors of the HOCTS and proposed ROCTA are 

denoted by ess and essr, respectively. Weighting factors are 

represented by w1, w2, and w3 and the H∞ norm error is given 

by 0 rG G


− . 

3. Failure of the Existing techniques 

In this article, two numerical examples are considered to 

demonstrate the instability issue of reduced model by Biradar 

et al.'s method (2016), Ahamad & Sikander's method (2021), 

Jain & Hote (2021) and Potturu et al.'s method (2021). It is 

unveiled that the stability claim made by these methods 

(Biradar et al., 2016; Ahamad & Sikander, 2021; Potturu et al., 

2021) is not always valid. 
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Example 1:
5 4 3 2

1 6 5 4 3 2

0.0067 0.6 1.5 2.016 1.55 0.6
( )

0.067 0.7 3 6.67 7.93 4.63 1

s s s s s
G s

s s s s s s

+ + + + +
=

+ + + + + +
 

Following Biradar et al.'s method (2016), the time moments 

are obtained as -6.393; -1.228; 0.6 and 2.9436. Therefore, the 

second-order ROA by Biradar et al.'s method (2016) is 

obtained as 

[ Biradar et al., 2016]1 2

17.2962 24.1921
( )

1 0.856 3.1541
r

s
G s

s s

−
=

+ −
  

  (4) 

As per the Routh stability criterion, all entries of the first 

column of the Routh array must be non-zero and of the same 

sign for stability. A sign change in the first column of the Routh 

table of the denominator polynomial of G1r(s) [Biradar et al., 2016] 

can be clearly observed which leads to instability. Similarly, 

the second-order ROA by Potturu et al.'s method (2021) for 

G1(s) is given by 

[ Potturi et al., 2021]1 2

0.19023 0.2265
( )

0.31704 0.27139
r

s
G s

s s

− +
=
− − +

  

  (5) 

There is a sign change in the first column of the Routh array 

of the denominator polynomial of G1r [Potturi et al., 2021]. Further, 

the 2nd order model by Jain & Hote's method (2021) for 

Example 1 is obtained as 

[ Jain and Hote, 2021]1 2

0.0951 0.1331
( )

0.31704 0.27139
r

s
G s

s s

− +
=
− − +

 

   (6) 

It is evident that G1r[Jain & Hote, 2021] (s) is also unstable due to a 

right half pole. Similarly, the 2nd order ROA by Ahamad & 

Sikander method (2021) for G1(s) is given by 

 & Sikander, 20211 2

23.3268 32.6264
( )

1 0.8560 3.1541Ahamadr

s
G s

s s

−
=

+ −
  

  (7) 

For the reduced model for G1r [Ahamad & Sikander, 2021] (s) in (7) there 

exists a pole at 0.7149 which is in the right half of the s-plane. 
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Hence, G1r [Ahamad & Sikander, 2021] (s) is also unstable. Now, another 

example is considered for which these methods (Biradar et al., 

2016; Ahamad & Sikander, 2021; Jain & Hote, 2021; Potturu 

et al., 2021) yield unstable approximants. 

Example 2:
6 5 4 3 2

2 7 6 5 4 3 2

0.1 9.205 44.78 86.06 98.36

66.79 22.39
( )

11.95 60.45 166.7 267.7 246.6

118.6 22.39

s s s s s

s
G s

s s s s s s

s

+ + + + +

+
=

+ + + + + +

+

 

The time moments for Example 2 are derived as follows: -

223.3127; -54.0866; -12.4825; -2.3140; 1.00; 5.6364; 26.2634; 

110.2344; and 450.7146. The instability of both the 2nd and 5th 

order approximants of Example 2 has been examined. Both 

are found to be unstable. The 2nd and 5th order ROAs obtained 

by Biradar et al.’s method (2016) are given by 

[  et al., 2016]2 2

3.9871 0.9060

10.2327 1.9864 1Biradarr

s
G

s s

−
=

+ −
  

  (8) 

[  et al., 2016]

4 3 2

5 5 4 3 2

0.6677 18.76 9.352 21.23 7.295

4.956 13.38 26.5 20.9 3.179 1Biradarr

s s s s
G

s s s s s

+ − + −
=

+ + + + −

 (9) 

The instability of the 2nd-order approximant (8) can be 

attributed to the presence of a pole at 0.2303 in the right half 

of s-plane. We can determine stability of the ROA (9) by using 

Routh table which is given as below 

4.95

6 

26.

5 
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79 

 

13.3

8 

20.

9 

-1  

18.7

586 

3.5

494 

  

18.3

683 
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4.57

07 

   

-1    
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The presence of a sign change in the first column of the Routh 

array indicates that the fifth order approximant of Example 2, 

as determined by Biradar et al.'s technique (2016) is 

characterized by instability. The 2nd and 5th-order models 

obtained by Potturu et al.’s method (2021) for G2(s) are given 

by 

[  et al., 2021]2 2

0.4203 0.09773

0.1941 0.09773Potturur

s
G

s s

−
=

+ −
  

  (10) 

[  et al., 2021]

4 3 2

5 5 4 3 2

0.7942 1.721 1.596 1.108 0.2018

2.7 5.346 4.217 0.6414 0.2018Potturur

s s s s
G

s s s s s

+ + + −
=

+ + + + −

 (11) 

The 2nd and 5th-order ROAs as per the approach proposed by 

Jain & Hote’s method (2021) are obtained as follows 

 
[  and Hote, 2021]2 2

0.2648 0.0489

0.1941 0.09773Jainr

s
G

s s

−
=

+ −
 

 (12) 

[  and Hote, 2021]

4 3 2

5 5 4 3 2

0.9961 1.439 2.007 0.8072 0.1009

2.7 5.346 4.217 0.6414 0.2018Jainr

s s s s
G

s s s s s

+ + + −
=

+ + + + −

 (13) 

 

and the approximants obtained by the method given by 

Ahamad & Sikander's method (2021) are as follows 

[ Ahamad and Sikander, 2021]2 2

4.26 0.9757

10.23 1.986 1
r

s
G

s s

−
=

+ −
  

  (14) 

[ Ahamad & Sikander, 2021]

4 3 2

5 5 4 3 2

7.724 0.3822 22.09 6.925 3.841

4.956 13.38 26.5 20.9 3.179 1
r

s s s s
G

s s s s s

+ + − +
=

+ + + + −

 (15) 

 

The generated ROAs in equations (10)-(15) exhibit instability 

due to the presence of sign changes in the first column of the 

Routh array. This observation verifies the instability of these 

approximations. Hence, it is clear that all four methods 

(Biradar et al., 2016; Ahamad & Sikander, 2021; Jain & Hote., 
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2021; Potturu et al., 2021) may not guarantee stable ROAs for 

all HOCTS. 

4. Proposed Method 

This section focuses on the two steps involved in the 

suggested approach for achieving ROA. The stability 

equations (Chen et al., 1979) are utilized in the initial stage to 

ascertain the denominator polynomial of the suggested 

ROCTA. The second part of the process entails the calculation 

of the numerator polynomial through the utilization of MPOA, 

as described by Faramarzai et al. (2020). This computation is 

carried out with the objective of minimizing the performance 

indices outlined in equation (3). The procedure for acquiring 

the planned ROCTA is outlined as follows: 

4.1 Computation of ROA for the denominator  

The computation of the denominator polynomial for the 

proposed ROCTA is performed initially. Therefore, the n-th 

order denominator polynomial (1) may be divided into two 

distinct sets: one consisting of even powers of s and the other 

consisting of odd powers of s, as demonstrated below: 
2

0

1

( ) 1
e

j

n

j s

s
E s d

z=

 
 = +
 
 

     

  (16) 

0

2

0

1

( ) 1

j

n

j s

s
O s b s

p=

 
 = +
 
 

     

  (17) 

where ne and n0 are the integer parts of n/2 and (n-1)/2, 

respectively. It can be observed that 2

jsz and 2

jsp increases 

monotonically. Therefore, it is possible to remove the terms 

with bigger magnitudes in order to obtain the denominator of 

the rth order ROA. The development of the new equations is 

undertaken as 
2

0

1

( ) 1
e

j

r

smose

j s

s
E s d

z=

 
 = +
 
 

     

  (18) 
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0

2

0

1

( ) 1

j

r

smose

j s

s
O s b s

p=

 
 = +
 
 

     

  (19) 

where re and ro are the integer parts of r/2 and (r-1)/2, 

respectively. Thus, the denominator of the proposed ROCTA 

is obtained as 

Dsmose(s) = Esmose(s) + Osmose(s)     (20)  

4.2. Computation of ROA for the numerator 

In this section, the computation of the reduced-order 

numerator approximant of the proposed technique is 

performed using the MPOA as presented by Faramarzi et al. 

in 2020. The MPOA employs a modeling approach that 

incorporates Lévy and Brownian motion patterns to simulate 

the movement of ocean predators. This is done in conjunction 

with an optimal encounter rate strategy within a marine 

ecosystem. During low concentration of targets, it uses Lévy 

movement, whereas Brownian motion is followed during 

ample target case. Similar to other optimization algorithms, 

the initial solution of MPOA is distributed uniformly in the 

search space as 

(21) 

 

where xmax and xmin are the upper and lower bounds of the 

unknown variables and [0,1]rand   is a uniform random 

vector. As MPOA is based on the survival of the fittest, the 

best solution is entitled as the best predator. It forms an élite 

matrix which is given by  

1, 1 1, 2 1, d

2, 1 2, 2 2, d

, 1 , 2 , d

I I I

I I I

I I I

n n n n d

É É É

É É É

É

É

lite

É É


 
 
 
 =
 
 
 
 

     (22) 

where IÉ  represents the best predator vector which 

constructs the Élite matrix by replicating n times, n is the 

number of search agents, and d is the number of dimensions. 

Based on the target’s positions information, the arrays of this 

0 min max min( )x x rand x x= + −
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matrix manage searching and finding the target. Both 

predator and target are considered search agents. The Élite 

matrix updates after each iteration if an improved predator 

replaces the best predator. The predators update their 

positions using the target matrix T. The initialization forms the 

initial target matrix, of which the best predator constructs the 

Élite matrix. The target matrix is given by   

1, 1 1, 2 1, d

2, 1 2, 2 2, d

, 1 , 2 , dn n n n d

T T T

T T T

T

T T T


 
 
 
 =
 
 
 
 

   

  (23) 

where Pi,j presents the jth dimension of the ith target. 

Considering different velocity ratios and imitating the life of a 

predator and target, the MPOA is separated into three main 

stages. A specific iteration period is specified and allocated for 

each stage which is as follows: 

Stage 1 (The high-velocity ratio occurs when the predator 

exhibits a greater speed than its target): This phenomenon 

arises at the earliest stages of the optimization iterations. The 

mathematical representation of this stage is given as 

max

1
 

3
while Iter Iter  

,  1,  2,i B i B istepsize R lite R T i nÉ
→→ → → → 

=  −  = 
 

 

  (24) 

.i i iT T P R stepsize
→ → → →

= +   

where 
BR

→

is the normal distribution-based random numbers 

vector that represents the Brownian motion and is denoted 

as P. The constant value of P is 0.5. R is a vector consisting of 

uniform random values within the range of [0, 1]. Iter refers 

to the current iteration, and itermax is the maximum iteration. 

The multiplication of 
BR

→

by target simulates the motion of the 

target.  
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Stage 2 (The unit velocity ratio refers to a scenario when both 

the predator and the target move at a same pace): This phase 

takes place during the intermediate optimization stage, 

wherein both the predator and the target actively search for 

their respective prey. Therefore, the objective of exploration 

is to transition towards exploitation. Consequently, one 

portion of the population is allocated for the purpose of 

exploration, while the remaining portion is designated for 

exploitation. During this phase, the prey organism engages in 

exploitation, while the predator organism engages in 

exploration. When a target exhibits Lévy motion with a unit 

velocity ratio (v ≈ 1), the optimal strategy for a predator is to 

employ Brownian motion. The mathematical model 

pertaining to this particular step is 

max max

1 2
 
3 3

while Iter Iter Iter   

For the first half of the population: 

; 1,  2, / 2i L i L is Étepsize R lite R T i n
→→ → → → 

=  −  = 
 

 

.i i iT T P R stepsize
→ → → →

= +      

 (25) 

where 
LR

→

 is a Lévy distribution based random number 

vector. 

For the second half of the population: 

; / 2,i B B i istepsize R R lite T i n nÉ
→→ → → → 

=   − = 
 

 

.i i iT lite P CF stepsiÉ ze
→→ →

= +     

  (26) 

where 
max max

1 2
Iter Iter

CF
Iter Iter

  
= −  
  

is an adaptive 

parameter which controls the predator movement. 

Stage 3 (Low-velocity ratio: When predator moves faster than 

target):  

This situation occurs in the last stage and associates with high 

exploitation. In a low-velocity ratio (v = 0.1), Lévy is the best 

strategy for a predator which is represented as  
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max

2
 

3
while Iter Iter  

,   1, ,i L L i istepsize R R liteÉ T i n
→→ → → → 

=   − = 
 

 

.i i iT lite P CF stepsiÉ ze
→→ →

= +     

  (27) 

Here, the multiplication of 
LR

→

and Élite simulates predator 

movement in the Lévy scheme while adding the stepsize to 

Élite position simulates the predator movement to update 

target’s position. 

It is to be noted that the eddy formation or fish aggregating 

devices (FADs) cause behavioural change in Marine predators. 

The FADs may be considered as local optima, and a long-jump 

of predators avoids trapping into local optima. The effect of 

FADs is presented as 

 

max minmin

1 2

  

(1 )   

i

i

i r r

T CF X R x x U if r FADs

T

T FADs r r T T if r FADs

→ → → → →

→

→ → →

   
+ +  −     

   
= 

  + − + −    

 (28) 

where FADs = 0.2 is the probability of FADs effect on the 

optimization process, r is the uniform random number within 

[0,1], The construction of [0,1]U
→

  involves the generation 

of a random vector, followed by the modification of its 

elements. Specifically, if an element in the vector is less than 

0.2, it is set to zero, and if it is more than 0.2, it is set to one. 

The Pseudocode of the MPOA is given below 

  

Initialize Target populations 1,2, ,i n=   

while termination criterion is not achieved 

Calculate the fitness, construct the Élite matrix, and achieve 

memory saving 

    if Iter < Itermax / 3 

       Update target using (24) 

    elseif Itermax / 3 < Iter < 2* Itermax / 3  

       For the first half of the populations ( 1,2, , 2)i n=  
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       Update target using (25) 

       For the second half of the populations ( 2, , )i n n=  

       Update target using (26)  

    elseif Iter > 2* Itermax / 3 

       Update target using (27) 

    end if 

       Achieve memory saving and update Élite 

       Apply FADs effect and update using (28) 

end while 

_________________________________________________

___________________ 

5. Numerical Examples  

The second-order reduced model for Example 1 is obtained 

using the proposed method which is given below: 

 

( )1 2

0.076796 0.228345

0.1328 0.6146smose

s
G s

s s

+
=

+ +
 

The poles of the function G1smose(s) are located at -

0.3073±0.19587j, which are situated in the left half of the 

complex s-plane. Therefore, it may be concluded that the 

aforementioned second-order reduced model exhibits 

stability. Table 1 displays the values of the integral square 

error (ISE), integral absolute error (IAE), integral of time 

multiplied absolute error (ITAE), and the H∞ norm error for 

Example 1. Additionally, the table includes the outcomes 

obtained using the existing methodologies (Biradar et al., 

2016; Prajapati & Prasad, 2019b; Ahamad & Sikander, 2021; 

Jain & Hote, 2021; and Potturu et al.’s method, 2021).  

According to the data presented in Table 1, it is evident that 

the suggested method yields the lowest values for ISE, IAE, 

and ITAE in comparison to other methods (Biradar et al., 2016; 

Prajapati and Prasad, 2019b; Ahamad & Sikander, 2021; Jain 

and Hote, 2021; Potturi et al., 2021). The proposed method 

yields a superior H∞ norm error compared to the methods 

proposed by Biradar et al. (2016), Ahamad & Sikander (2021), 

and Jain & Hote (2021). Nevertheless, the method proposed 

by Prajapati and Prasad (2019b) as well as the method 

presented by Potturu et al. (2021) exhibit a somewhat lower 

H∞ norm error compared to the strategy suggested in this 
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study. The instability of the second-order ROAs proposed by 

Biradar et al. (2016), Ahamad and Sikander (2021), Jain and 

Hote (2021), and Potturu et al. (2021) has been demonstrated 

in Section 3. Therefore, it is noteworthy that the error indices 

of the approximants derived from the methodologies 

employed by Biradar et al. (2016), Ahamad and Sikander 

(2021), Jain and Hote (2021), and Potturu et al. (2021) are 

significanty high. 

The optimal values within the table are shown by the 

utilization of bold typeface. Additionally, Figures 1a, 1b, and 

1c depict the step responses, error in step responses, and 

frequency responses, respectively, of the second-order 

approximations of Example 1 using both the proposed 

technique and Prajapati & Prasad's method (2019b). The 

Figures representing the plots for Biradar et al. (2016), 

Ahamad & Sikander (2021), Jain & Hote (2021), and Potturu 

et al. (2021) have not been generated due to the observed 

instability of the obtained results using these approaches. 

Based on the analysis of frequency responses, it is evident 

that the method proposed by Biradar et al. (2016) and the 

method proposed by Ahamad and Sikander (2021) do not 

yield a closely matched approximation. However, alternative 

approaches (Prajapati & Prasad, 2019b; Jain & Hote, 2021; 

Potturu et al., 2021), including the suggested method in this 

study, yield a satisfactory approximation. 

Table 1: Comparison of various error indices of ROAs for 

Example 1 

Method 
rG G


−  ITAE IAE ISE 

Proposed 0.3325559 1.412557 0.3649175  0.0307478 

Ahamad & 

Sikander's (2021) 

22.72679 1.8732e+03 2.458138e+02 4.57792e+03 

Biradar et al.’s 

(2016) 

16.69619 1.3689e+03 1.806033e+02 2.4711e+03 

Jain & Hote's 

(2021) 

0.3491158 51.33992 5.132514 4.161235675 

Potturu et al.’s 

(2021) 

0.323802 2.9526e+04 2.17084e+03 1.68447e+06 

Prajapati & 

Prasad's (2019) 

0.292987 2.503519 0.7299123 0.103989638 



 

 

 

 

Journal of Namibian Studies, 35 S1 (2023): 3881-3904    ISSN: 2197-5523 (online) 

 

3896 

 

 

 
Fig. 1(a): Step response comparison 

 
Fig. 1(b): Error in step responses  Fig. 1(c): Frequency response 

comparison 

The 2nd and 5th-order approximants of Example 2 are 

analyzed, obtained by the proposed and existing methods 



 

 

 

 

Journal of Namibian Studies, 35 S1 (2023): 3881-3904    ISSN: 2197-5523 (online) 

 

3897 

 

(Biradar et al., 2016; Prajapati & Prasad, 2019b; Ahamad & 

Sikander, 2021; Jain & Hote, 2021; Potturi et al., 2021). It is 

already shown in Section 3, that the 2nd and 5th-order ROAs 

obtained by Biradar et al. (2016), Ahamad & Sikander (2021), 

Jain & Hote (2021), Potturi et al. (2021) methods are unstable. 

The 2nd and 5th order approximations of Example 2, as 

calculated using the suggested method, are as follows: 

                                 (29) 

 

 

    (30) 

 

The poles of the system G2smose(s) are determined to be -

0.25725 ± 0.175847j. Therefore, it can be concluded that the 

second-order model for Example 2, as determined by the 

presented method, exhibits stability. In order to assess the 

stability of the suggested approximant (30), the Routh table is 

employed, as depicted in the following manner: 

It is evident that there is an absence of sign change in the 

initial column of the Routh array. Therefore, it can be 

concluded that the suggested 5th-order ROA exhibits stability. 

1 4.76

9 

2.

13 

 

2.636 4.39

6 

0.

40

21 

 

3.101

322 

1.97

745

8 

  

2.715

2392 

0.40

21 

  

1.518

18 

   

0.402

1 

   

( )2 2

0.33457 0.092096

0.5145 0.0971smose

s
G s

s s

+
=

+ +

( )
4 3 20.97035 1.3592 1.87817 1.185 0.403407

5 5 4 3 22.6359 4.7695 4.3961 2.13 0.4021smose

s s s s
G s

s s s s s

+ + + +
=

+ + + + +
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Hence, it can be concluded that the stability of the suggested 

method's ROAs in Examples 1 and 2 is established. 

Table 2 presents the ISE, IAE, ITAE, and H∞ norm error values 

obtained from the proposed technique and existing methods 

(Biradar et al., 2016; Prajapati & Prasad, 2019b; Ahamad & 

Sikander, 2021; Jain & Hote, 2021; Potturi et al., 2021) for 

Example 2. The method developed by Ahamad and Sikander 

(2021) demonstrates slightly superior results compared to the 

suggested method. However, when compared to the 

approaches presented by Biradar et al. (2016), Prajapati and 

Prasad (2019b), Jain and Hote (2021), and Potturi et al. (2021), 

the proposed method consistently achieves the lowest error 

indices.  

Table 3 displays the error indices corresponding to the 5th 

order approximant of Example 2. The data shown in Table 3 

indicates that Biradar et al. (2016) and Ahamad & Sikander 

(2021) exhibit higher error indices, which can be attributed to 

the presence of an unstable approximant, as discussed in 

Section 3. Remarkably, the method proposed by Potturu et al. 

(2021) yields reduced values of Integral Square Error (ISE), 

Integral Absolute Error (IAE), and Integral Time-weighted 

Absolute Error (ITAE) for the 5th-order approximant, even 

after having the presence of an unstable approximant. 

Nevertheless, the aforementioned methodologies (Biradar et 

al., 2016; Ahamad & Sikander, 2021; Jain & Hote, 2021; 

Potturi et al., 2021) do not provide a guarantee of the stability 

of the ROAs. In contrast, the proposed MOR method 

guarantees the stability of ROA and yields comparable error 

indices. Therefore, it can be inferred that, the proposed 

approach exhibits superior performance in comparison to the 

established methodologies (Biradar et al., 2016; Prajapati and 

Prasad, 2019b; Ahamad & Sikander, 2021; Jain & Hote, 2021; 

Potturi et al., 2021). 

Table 2: Comparison of various error indices of 2nd-order 

ROAs for Example 2 

Method 
rG G


−  ITAE IAE ISE 

Proposed 0.374959 2.0369210 0.4633578 0.0443109 

Ahamad & 

Sikander's (2021) 

0.3461587865 0.78569923 0.31641214 0.02921412 
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Biradar et al.'s 

(2016) 

0.340750436 5.266572709 0.894394053 0.0675785051 

Jain & Hote's 

(2021) 

0.4996192342 24.59303554 3.562492821 0.9943055718 

Potturu et al.'s 

(2021) 

0.3463455085 9.71710739 1.053335375 0.11624444 

Prajapati & 

Prasad's (2019) 

0.432037141 5.23155926 1.209650576 0.22484991 

Table 3: Comparison of various error indices of 5th-order ROAs 

for Example 2 

Method 
rG G


−  ITAE IAE ISE 

Proposed 0.1195229 0.6216512 0.14269254 0.00267585 

Ahamad & Sikander's 

(2021) 

8.178719999 2.83356e+02 36.9070795 1.3019e+02 

Biradar et al.'s (2016) 2.10059048 23.02517812 3.73066328 1.387690629 

Jain & Hote's (2021) 0.499898171 52.5462873 0.27456137 3.06318055 

Potturu et al.'s (2021) 0.1256661 0.18250369 0.0834931 0.0018081 

Prajapati & Prasad's 

(2019) 

0.17486613 0.1668596 0.10414799 0.00447967 

 

The analysis of Figure 2a reveals that the proposed method 

provides a more accurate approximation compared to the 

approach presented by Prajapati & Prasad (2019b). However, 

there is room for improvement in the error of the step 

response in certain sections of the plot, as depicted in Figure 

2b. In this case, all methods (Biradar et al., 2016; Prajapati & 

Prasad, 2019b; Ahamad & Sikander, 2021; Jain & Hote, 2021; 

Potturi et al., 2021) offers satisfactory frequency response 

characteristics. See Figure 2c. Figure 3 displays the plots of the 

fifth-order approximants, which bear resemblance to the 

plots observed in previous cases. The step responses depicted 

in Figure 3a provide clear evidence that, the suggested 

method closely approximates the response of the original 

system. However, it is worth noting that there is room for 

improvement in the step response error, as depicted in Figure 

3b. This aspect should be explored further in future research 

endeavors. In the present scenario, it is seen that the 

frequency response estimate provided by Biradar et al. (2016) 

and Ahamad & Sikander's technique (2021) is inadequate for 
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lower frequency ranges. Nevertheless, the proposed 

approach by Ahamad and Sikander (2021) offers an 

acceptable approximation for higher frequency values. In 

contrast, the method proposed offers a more accurate 

estimation across all frequency ranges. Hence, it can be 

inferred that the suggested approach guarantees the stability 

of the ROAs, a feature that was not guaranteed by previous 

methodologies (Biradar et al., 2016; Ahamad & Sikander, 

2021; Jain & Hote, 2021; Potturi et al., 2021), while also 

offering comparable time and frequency response 

characteristics. 

 
Fig. 2(a): Step response comparison 

 
Fig. 2(b): Error in step responses 

 
Fig. 2(c): Comparison of frequency 

responses 
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Fig. 3(a): 

Step 

response 

comparison 

 
Fig. 3(b): Error in step responses 

 
Fig. 3(c): Frequency response comparison 

 

6. Conclusions 

This article presents a novel approach for determining 

reduced-order approximations of higher-order continuous-

time systems. The article also highlights the shortcomings and 

stability issues associated with existing methods (Biradar et 

al., 2016; Ahamad & Sikander, 2021; Jain & Hote, 2021; 

Potturi et al., 2021), as demonstrated through numerical 

examples. The proposed technique ensures the stability of all 

approximations if the original system is stable. Simulation 

results indicate that the proposed method generally provides 

a more accurate approximation compared to existing 

methods. However, it is worth noting that the simulation run-
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time of the proposed method may be longer due to the fitness 

function, and there is room for improvement in terms of 

approximation error. Nonetheless, these limitations can be 

overlooked considering the stability guarantee offered by the 

proposed method, and these can be addressed in future 

research. Furthermore, the proposed method can be easily 

extended to discrete-time systems. 
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