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Abstract

This study presents an integrated remote sensing approach for
monitoring and assessing the health and development of
wheat crops in Allahabad district, Uttar Pradesh, an important
wheat-producing region in India. Satellite images from Landsat
7 and Landsat 8, acquired on five key dates during the 2015—
2016 growing season (December 24, 2015; January 24, 2016;
February 10, 2016; March 21, 2016; and April 14, 2016), were
utilized to derive the Normalized Difference Vegetation Index
(NDVI) across 110 contiguous wheat fields spanning the all
eight tehsils of the district. The temporal NDVI analysis
revealed a clear phenological evolution, with mean values
progressing from 0.07 during the crop establishment phase in
December to a peak of 0.47 in February, followed by a decline
to 0.31 in March and reaching a low of 0.13 by April, marking
the onset of senescence and harvest-readiness. Further, spatial
assessments of NDVI revealed variability in crop health within
and among the selected fields, with higher heterogeneity
apparent during early and peak growth phases indicating
localized stress factors such as moisture deficits or nutrient
imbalances. The later uniformity in NDVI across fields, while
indicative of synchronized senescence, also raised concerns for
areas that consistently underperformed during peak growth.

Overall, the findings of the present study underscore the
efficacy of satellite remote sensing as a cost-effective and
scalable solution for monitoring and assessing crop health.
Moreover, this technology underpins precision agriculture by
enabling timely, targeted interventions that optimize crop
management and sustain yield potential.
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1. Introduction
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Timely stress detection in crops is critical for ensuring that
appropriate remedial actions can be implemented before
stress factors lead to irreversible damage. Early identification of
stress whether due to water deficits, nutrient imbalances, pest
infestations, or disease is essential for minimizing yield losses
and sustaining crop productivity. Remote sensing has
revolutionized the monitoring of crop health by providing
timely, large-scale, and non-invasive data that surpasses the
capabilities of conventional field surveys. Unlike traditional
methods where visual inspections and manual sampling are
labour intensive and often limited to discrete areas, remote
sensing uses multispectral imaging to capture continuous data
across extensive agricultural fields. This allows for early
detection of stress indicators, such as changes in canopy
reflectance, which can signal water deficits, pest infestations,
or nutrient imbalances before these issues become visible to
the naked eye. As a result, farmers and agronomists can rapidly
implement targeted interventions, thereby reducing the risk of
substantial vyield losses and enabling more precise
management of inputs and resources.

Furthermore, remote sensing offers high temporal resolution,
which is critical for monitoring the dynamic growth stages of
crops. Continuous data acquisition from aerial or satellite
platforms not only enhances spatial coverage but also delivers
consistent, objective measurements over time. This is
particularly advantageous when tracking the subtle
physiological changes that occur during early crop
development and throughout the growing season. The
pioneering work by Rouse et al. (1973) and subsequent
advancements by Tucker (1979) laid the foundation for such
techniques, demonstrating that spectral data not only can be
used for monitoring crop growth through its various stages but
also to pinpoint areas of early stress with considerable
accuracy.

The amount of radiation reflected/absorbed by crop canopies
varies due to the presence of certain pigments such as
chlorophyll (an indicator of plant vigour/health) and the
wavelength of incident radiation. Chlorophyll absorb radiation
strongly in the visible spectrum (400 — 700 nm). In contrast, the
reflectance is high in the near infrared (700 - 1300 nm) region
as a result of leaf density and canopy structure effects. The
level of chlorophyll in crops changes/decreases due stress and
these changes can alter/reduce the reflectance in crops. By
combining the response of crop reflectance in visible and near
infrared regions a measure of crop health and/or an early
detection of various stresses can be obtained. Based on such
principles, vegetation indices such as the Normalized
Difference Vegetation Index (NDVI) can be instrumental in
providing near real-time indicators of crop health (Rouse et al.,
1973). Such indices can reveal subtle changes in plant vigour
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long before visual symptoms appear, thereby alerting growers
to emerging issues and allowing for prompt, targeted
interventions.

NDVI is based on ratios of reflectance values of crops in the
visible and NIR regions and have been widely utilized for
agricultural mapping and monitoring (Maselli et al., 1992;
Rasmussen, 1992; Benedetti and Rossini, 1993). NDVI is
developed directly from multispectral satellite images and can
be used throughout the growing season to not only detect
problems, but also to monitor the success of the treatment.
Kogan (1995) and Bastiaanssen et al. (2000) were among the
pioneers in applying remote sensing techniques to irrigated
agriculture and demonstrated how satellite imagery combined
with indices such as NDVI can effectively monitor crop water
stress and assess field conditions. Expanding on the reliability
of NDVI, Sims and Gamon (2003) investigated the relationships
between leaf pigment content and spectral reflectance across
a diverse range of species and developmental stages. Their
study validated the accuracy of NDVI derived assessments
across different crop types and under varying environmental
conditions, thereby reinforcing its widespread application in
agricultural monitoring.

Mulla (2007) provided a comprehensive review of progress in
the application of remote sensing within precision agriculture,
with a detailed focus on the evolution of NDVI-based
techniques. While foundational research established NDVI as a
robust proxy for vegetation health, subsequent studies such as
those by Funk et al. (2009), Jone et al. (2010), Mkhabela et al.
(2011) and Li et al. (2013) have expanded its use from crop
monitoring to drought monitoring and yield
estimation/forecasting. Advances in satellite sensor resolution
and data processing in exemplified works by Zarco-Tejada et al.
(2014) and Johnson et al. (2015) continue to enhance the
granularity and applicability of NDVI assessments.

The present study utilizes satellite remote sensing for
monitoring the growth and health of wheat crops in the study
area. By harnessing NDVI-derived insights along with
comprehensive spatial and temporal evaluations, the research
aims at capturing critical stages of crop development from early
growth to maturation and detect variations in plant vigour. The
study area for this investigation encompasses the wheat-
growing regions within Allahabad district, a vital segment of
Uttar Pradesh’s extensive agricultural landscape. Uttar Pradesh
is a cornerstone of India’s wheat production, playing a pivotal
role in ensuring its substantial yield contributions. Within this
framework, Allahabad district has long been recognized as a
key wheat-producing region, consistently delivering a
significant share of the state’s overall output thanks to its fertile
alluvial soils, favourable climatic conditions, and well-
established irrigation infrastructure.
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Given the district’s strategic importance, leveraging advanced
technologies to monitor crop health is critical for optimizing
yield potential. Modern remote sensing techniques, for
instance, enable the timely detection of stress factors and
precise assessment of crop vigour, which in turn supports
targeted agronomic interventions and more efficient resource
management. This approach not only enhances the reliability
of yield estimates but also helps ensure that the region
continues to meet its pivotal role in sustaining both regional
and national wheat demands.

2. Methodology

Satellite images were acquired on five distinct dates: December
24,2015; January 24, 2016; February 10, 2016; March 21, 2016;
and April 14, 2016. The satellite data utilized in the present
study included raster images in visible and near-infrared bands
of the electromagnetic spectrum acquired by the Enhanced
Thematic Mapper (ETM+) and Operational Land Imager (OLI)
sensors, onboard Landsat 7 and Landsat 8 satellites
respectively. For each image, the NDVI was computed using
the following formulation, originally introduced by Rouse et al.
(1973):

NIR-Red

NDVI = NIR+Red

(1)

Where, NIR represents the reflectance captured in the near-
infrared band, while Red stands for the reflectance in the red
band of the electromagnetic spectrum. Before applying
Equation 1, the raw satellite data, represented as Digital
Numbers (DN), is first converted into spectral radiance and
subsequently into Top-of-Atmosphere (TOA) reflectance. A
comprehensive methodology for this conversion from DN to
spectral radiance and, ultimately, TOA reflectance is available
on the USGS website and documented in key literature,
including works by Chavez (1988), Vermote et al. (1997), and
Huang et al. (2001). A brief conceptual summary of this
methodology is provided below:

The raw Digital Numbers (DN) of Landsat 7 satellite data utilized
in the present study were converted into spectral radiance
using a linear transformation with calibration coefficients
provided in the satellite image metadata (Equation 2):

Ly = My Qeal + AL
(2)

Where Ly is the TOA spectral radiance (Watts/(m?srad um)); M,
is band-specific multiplicative rescaling factor from the
metadata; A, is the band-specific additive rescaling factor from
the metadata and Q. is the quantized and calibrated standard
product pixel values (DN). Further, the TOA spectral radiance is
converted into TOA reflectance. This step normalizes the
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radiance by accounting for solar geometry and Earth—Sun
distance variations, ensuring consistency across different
acquisition dates (equation 3):
XLy xd?
Pr = ESUN; xcos8g

(3)

Where py is the unitless planetary reflectance; Ly is the spectral
radiance (from equation 2); d is Earth-Sun distance in
astronomical units; ESUNp» = mean solar exoatmospheric
irradiances and 6 = solar zenith angle.

The TOA reflectance for Landsat 8 satellite data utilized in the
present study was computed as (equation 4):

p}\, = Mchal + Ap
(4)

Where p)' =TOA planetary reflectance, without correction for
solar angle; M, is the Band-specific multiplicative rescaling
factor from the metadata; A, is band-specific additive rescaling
factor from the metadata and Q.. is quantized and calibrated
standard product pixel values (DN). The TOA reflectance with a
correction for the sun angle wasestimated as (equation 5):

Py = pA’ — pA’
A7 cos(Bsz)  sin (Bsg)

(5)

Where pa is the TOA planetary reflectance; B¢ is the local sun
elevation angle and 6s; is the local solar zenith angle (Bsz= 90°
- esg).

The NIR and Red bands are particularly important because
healthy vegetation strongly reflects near-infrared light and
absorbs red light, making NDVI a robust indicator of vegetation
vigour. The computed NDVI values range from -1 to +1, where
higher values typically signify healthier and more robust
vegetation. In practical applications however, areas exhibiting
dense, vigorous vegetation typically show NDVI values in the
range of 0.6 to 0.9, whereas values closer to zero indicate
sparse or stressed vegetation, and negative values often
correspond to non-vegetated surfaces such as water or urban
areas. This sensitivity makes NDVI a reliable metric to
distinguish between healthy and compromised vegetation
across various landscapes.

By processing each satellite image with the aforementioned
methodology, a temporal series of NDVI maps were obtained
with an aim to capture the dynamic changes in crop conditions
over the growing season. For selected wheat fields, the
maximum, mean, and minimum NDVI values were extracted.
Additionally, spatial distribution was analysed, and statistical
measures such as standard deviation and median values were
calculated to assess variability within and among the fields.
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Trends in NDVI over the study period were examined to confirm
the progression of the crop’s growing season.

3. Results

In agricultural settings, comprehending NDVI values can offer
critical insights into crop vitality throughout different growth
stages. For instance, during the early stages of crop
development, NDVI values might be modest, reflecting lower
biomass; however, as crops mature and green biomass
increases, NDVI values naturally rise. A sudden drop or
unexpected variation in NDVI across a field can serve as an early
indicator of stress factors such as pest infestations, water
stress, or nutrient deficiencies.

In the present study NDVI trends over time were analysed for
110 contiguous wheat fields spanning all the eight tehsils of
Allahabad district—Phulpur, Soraon, Koraon, Meja, Handia,
Karchana, Bara, and Allahabad. Figure 1, illustrates the
maximum, mean, and minimum NDVI values extracted from
satellite images acquired on five distinct dates: December 24,
2015; January 24, 2016; February 10, 2016; March 21, 2016;
and April 14, 2016. The mean NDVI values on these dates were
recorded as 0.07,0.41,0.47,0.31, and 0.13, respectively. These
NDVI values provide a quantitative reflection of the wheat
crop’s phenological evolution as captured via remote sensing
over the full growing season.

In Figure 1, the initial NDVI value of 0.07 on December 24,
2015, corresponds to an early stage of crop establishment,
where minimal green biomass and widespread exposed soil are
typical. As the season advances, the marked increase in mean
NDVI to 0.41 on January 24, 2016, and further to 0.47 on
February 10, 2016, clearly indicates a progression into the
growth/developmental phase. This period sees an expanding
of chlorophyll-rich canopies and vegetation cover, which are in
line with established baseline values for healthy
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Figure 1 Maximum, Minimum and Mean NDVI For Selected
Wheat Fields

wheat crops (typically ranging between 0.45 and 0.6). The
graph further reveals that the maximum and minimum NDVI
values moved in concert with the mean, highlighting both the
overall improvement in crop vigour and the underlying spatial
variability across the fields.

By March 21, 2016, the NDVI values begin to decline, with the
mean dropping to 0.31, signalling the onset of senescence as
the crop shifts from active vegetative growth to maturation.
The final image on April 14, 2016 shows a further decrease in
the mean NDVI to 0.13, indicating that the fields have largely
completed senescence and are harvest-ready. This steady
decline in NDVI after the peak growth period underscores the
end of the active growing season and transitioning toward crop
maturity.

Spatially distributed NDVI maps corresponding to the
respective image dates were generated and utilized to evaluate
the spatio-temporal variability of NDVI for wheat cultivation in
the study area. (Figure 2). These NDVI maps reveal a clear
spatio-temporal dynamics in the wheat fields over the growing
season. In the earliest observation from December 24, 2015,
the maps show a relatively low NDVI values overall, which is
consistent with the early stages of crop establishment when
green biomass is minimal. As the season progresses to January
24 and February 10, 2016, there is a marked increase in NDVI
values that reflects vegetative growth and higher chlorophyll
content indicative of optimal metabolic activity.

This upward trend aligns closely with the established baselines
for healthy wheat crops, typically ranging between 0.45 and
0.6. Moving into the later stages, the maps from March 21 and
April 14, 2016, begin to exhibit either a slight stabilization or a
decline in NDVI values. This change likely represents the
transition towards crop maturation or the onset of early
senescence, a phase during which vegetation vigour naturally
diminishes. Spatially, the NDVI maps also expose critical
variability within the fields.

While many areas maintain NDVI values that meet or exceed
baseline levels indicating zones of robust growth there are
distinct patches where the values fall significantly below the
normative range. These anomalies may point to localized
stressors such as water deficiencies, pest outbreaks, or nutrient
imbalances. Such discrepancies underscore the value of
integrating remote sensing into crop management practices,
allowing for precision interventions. By continuously
comparing the observed NDVI values with baseline standards,
agronomists can quickly identify underperforming zones and
implement targeted remedial strategies, thereby mitigating
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potential yield losses and ensuring more efficient resource
utilization.

The distribution of NDVI for the selected fields on individual
image dates was also assessed (Figure 3). The NDVI distribution
apparent in Figure 3 offers a detailed view of the variability in
vegetation health across the selected wheat fields on different
image dates. The relative frequency distribution of NDVI for the
selected fields are shown vertically along the axis of each image
date as a means of visualizing the variability and how often
specific NDVI ranges occur on each date. For December 24,
2015, the narrow spread of NDVI values with a standard
deviation of 0.03, minimum of 0.02, and maximum of 0.16
indicates a high concentration of pixels around low NDVI
values. The median value of 0.06 further confirms that over half
of the observed pixels exhibit very low levels of vegetation
vigour, which is characteristic of the initial stage of the wheat
growing season. At this early phase, the sparse vegetation and
the predominance of exposed soil are expected, reflecting the
limited canopy development immediately after planting.

As the growing season unfolds, subsequent image analyses
reveal significant shifts in the distribution of NDVI values that
reflect the evolving state of crop health. On January 25, 2016,
the median NDVI reached 0.41, with values ranging between
0.12 and 0.64. The apparent
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Figure 2 Spatial Distribution of NDVI for The Study Area on

Selected Image Dates
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increase in the median value signals an overall enhancement in
vegetation cover and vigour, indicative of crop growth as the
plants begin to develop dense, chlorophyll-rich canopies.
However, the observed standard deviation of 0.13 on this date
also highlights notable variability among the selected fields,
suggesting that the crop growth is not uniform.

A similar pattern in NDVI variability is evident on February 10,
2016. On this date, an increase in overall crop vigour is
reflected by a higher median NDVI of 0.50, with the minimum
and maximum values recorded at 0.15 and 0.60, respectively.
Despite this encouraging increment indicative of enhanced
vegetative cover the standard deviation remains relatively high
at 0.11. This persistent variability suggests that, although the
selected fields are exhibiting improved growth, there is still
significant heterogeneity in canopy development. Ideally, by
early February, one would expect most fields to have achieved
full canopy cover, resulting in a more uniform NDVI distribution.
However, the elevated standard deviation signals that some
areas/fields are not keeping pace with the overall growth
trends observed on January 25, 2016.

By March 21, 2016, the NDVI data reveal a significant shift in
crop dynamics, signalling the onset of senescence. The median
NDVI value has declined to 0.32, with overall values ranging
between 0.17 and 0.41—a notable decrease from the higher
readings observed during peak growth in January and February.
This reduction in NDVI reflects the loss of greenness and
chlorophyll content typical of crops transitioning from active
growth to the senescence phase. Further, the NDVI values had
approached their lowest levels by April 14, 2016 with a median
of 0.13 and an overall range from 0.08 to 0.23, marking the
culmination of the senescence phase and indicating that the
fields are harvest-ready.

This represents a marked change compared to earlier
assessments: while the earlier dates showed higher values
during the peak growth phase (with median NDVI values of
0.41in January and 0.50 in February), the substantial decline in
NDVI by April signifies the complete loss of canopy greenness
as the crop matures. The progressive decline in NDVI values
from the vigorous growth observed in January and February,
through the gradual uniformity noted in March, to this final,
low value stage on in April, effectively illustrates the complete
phenological cycle of the wheat crop.

Moreover, the low variability observed on March 21 and April
14—with standard deviations of 0.05 and 0.02 respectively,
highlights a uniform transition across the selected fields into
the senescent stage, aligning with expected phenological
progress. In contrast to the higher variability seen in previous
observations, this minimal spread indicates that nearly all areas
of the fields have synchronized in their progression towards
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maturity. Such uniformity is critical for optimizing harvest
operations, as it confirms that conditions conducive to harvest
have been reached across the entire study area.

However, this uniformity in the senescence phase also
underscores a potential concern: fields that never reached
optimal vigour during earlier stages may now be exhibiting
consistently low NDVI values. These areas, which failed to
achieve the higher NDVI benchmarks characteristic of vigorous
growth, signal poorer overall crop health and may ultimately
suffer from reduced yield potential. This comparative analysis
from the heterogeneity observed during peak growth to the
uniform decline now highlights the importance of continuous
monitoring and targeted interventions to mitigate the adverse
effects of non-uniform development.

Overall, the temporal NDVI trends captured in Figure 3 not only
demonstrate how satellite remote sensing effectively tracks the
phenological stages of crop development—from establishment
and peak growth to senescence—but also offer critical insights
into spatial variability across diverse agricultural landscapes,
thereby enabling targeted management interventions for
optimizing yield.

4. Discussion

The NDVI trends derived from the satellite images acquired on
five distinct dates provide a clear narrative of the wheat crop’s
phenological evolution over the growing season in Allahabad
district. In the initial phase on December 24, 2015, the NDVI
values were uniformly low, indicating the early stage of crop
establishment when green biomass is minimal and exposed or
bare soil is predominant in the selected fields. This early-stage
condition is expected, as the fields are still in the initial phases
immediately following planting.

As the season progressed into January 2016, a marked increase
in vegetation vigour was observed. This significant increase in
the median value reflects the onset of vegetative growth and
development of chlorophyll-rich canopies across the fields.
However, the relatively high standard deviation also points to a
noticeable heterogeneity in crop growth. Such variability could
be attributed to local differences in soil moisture, nutrient
availability, or other micro-environmental factors that cause
some fields to thrive while others lag behind.

The trend of increasing crop vigour continues into February
2016. Although this heightened NDVI suggests overall
enhanced vegetative cover, the persistence of variability
indicates that full canopy cover was not uniformly achieved
across the study area. This ongoing heterogeneity, despite an
overall trend towards increased greenness, implies that certain
patches may be under stress or experiencing suboptimal
growth conditions compared to their neighbouring fields,
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highlighting the necessity for targeted agronomic interventions
in such areas.

By March 21, 2016, a substantial shift is evident in the NDVI
data, marking the onset of crop senescence. The overall NDVI
declined along with a significant drop in variability. This
reduction in NDVI—the loss of canopy greenness and
decreased chlorophyll content—corresponds to the natural
progression from active growth to the senescence phase. The
much lower variability on this date suggests that the majority
of the fields are synchronously transitioning towards maturity,
although areas that never reached optimal vigour remain a
concern, as their lower NDVI values could forecast reduced
yield potential.

Finally, the NDVI values on April 14, 2016, reached their lowest
levels with an extremely low variability. This stage signifies the
completion of the senescence phase and confirms that the
fields are harvest-ready. The uniformity at this late stage, in
stark contrast to the earlier observed heterogeneities, indicates
that nearly all fields have synchronized their development
towards harvest maturity. While uniform senescence is
beneficial for coordinated harvest operations, the consistent
low NDVI readings also draw attention to fields that may have
underperformed during peak growth stages, implying that
these areas could have suffered from prolonged stress or
suboptimal agronomic conditions.

In summary, the temporal evolution of NDVI values from initial
low values at crop establishment, through a phase of vigorous
yet heterogeneous growth, to a uniform decline at senescence
not only illustrates the complete phenological cycle of wheat
but also underscores the utility of remote sensing for
continuous crop monitoring. The comparative insights
provided by these NDVI trends emphasize the need for timely,
location-specific interventions to minimize yield losses and
ensure resource efficiency across diverse agricultural
landscapes.

5. Conclusion

This research demonstrates that satellite-derived NDVI can
reliably monitor the progression of wheat growth, providing
crucial insights into crop health dynamics. Satellite remote
sensing, through the application of NDVI, has proven to be a
robust and efficient tool for monitoring and assessing wheat
crop health in Allahabad district. The temporal analysis—from
the initial low NDVI values indicative of sparse vegetation
during crop establishment in December, through the increasing
vigour observed in January and February, to the uniform
senescence stage captured in March and April demonstrates
the capability of this approach to accurately track the complete
phenological cycle of the crop.
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By continuously monitoring these changes, NDVI not only
provided real-time insights into crop development but also
underscored the spatial variability within and among the fields,
enabling the identification of underperforming areas that may
be at risk due to stress factors. The temporal increase and
subsequent decrease in NDVI values reflect the natural
development cycle of wheat, while spatial analysis confirms the
variability in crop conditions across the study area.

This level of detailed, objective, and timely information is
pivotal for precision agricultural practices, allowing for targeted
interventions that can mitigate yield losses and optimize
resource utilization. Ultimately, the integration of satellite
remote sensing with NDVI analysis offers significant advantages
over traditional monitoring methods, ensuring that crop
management decisions are well-informed, proactive, and
effective.

These findings support the further integration of remote
sensing tools into precision agricultural practices, enhancing
decision-making processes and resource management. Future
studies may expand upon this work by incorporating additional
spectral indices and higher temporal resolution data to refine
crop health diagnostics further.
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